Functions Question 65

Question: The integer n for which $ \underset{x\to 0}{\mathop{\lim }}\frac{(\cos x-1),(\cos x-e^{x})}{x^{n}} $ is a finite non-zero number is

[IIT Screening 2002]

Options:

A) 1

B) 2

C) 3

D) 4

Show Answer

Answer:

Correct Answer: C

Solution:

n cannot be negative integer for then the limit = 0
Limit $ =\underset{x\to 0}{\mathop{\lim }},\frac{2{{\sin }^{2}}\frac{x}{2}}{2^{2}{{(x/2)}^{2}}}\frac{e^{x}-\cos x}{{x^{n-2}}}=\frac{1}{2}\underset{x\to 0}{\mathop{\lim }},\frac{e^{x}-\cos x}{{x^{n-2}}} $
$ (n\ne 1 $ for then the limit $ =0) $
$ =\frac{1}{2}\underset{x\to 0}{\mathop{\lim }},\frac{e^{x}+\sin x}{(n-2){x^{n-3}}} $ .
So, if $ n=3, $ the limit is $ \frac{1}{2(n-2)} $ which is finite.
If $ n=4, $ the limit is infinite.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें