Functions Question 650

The value of $ p $ for which the function $ f(x)= \begin{cases} & \frac{{{(4^{x}-1)}^{3}}}{\sin \frac{x}{p}\log \left( \frac{4^{x}-1}{x} \right)

[ 1+\frac{x^{2}}{3} ]},,x\ne 0 \\ & ,12{(\log 4)}^{3},x=0 \\ \end{cases} . $ may be continuous at $ x=0 $ , is [Orissa JEE 2004]

Options:

1

2

3

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

For $ f(x) $ to be continuous at $ x=0, $ we should have $ \underset{x\to 0}{\mathop{\lim }},f(x)=f(0)=12,{{(\log ,4)}^{3}} $ $ \underset{x\to 0}{\mathop{\lim }},f(x)=\underset{x\to 0}{\mathop{\lim }}{{( \frac{4^{x}-1}{x} )}^{3}}\times \frac{( \frac{x}{p} )}{( \sin \frac{x}{p} )}.\frac{px^{2}}{\log ,( 1+\frac{1}{3}x^{2} )} $
$ ={{(\log 4)}^{3}},.,1,.,p,.\underset{x\to 0}{\mathop{\lim }}( \frac{x^{2}}{\frac{1}{3}x^{2}-\frac{1}{18}x^{4}+………} ) $ $ =3p{{(\log 4)}^{3}}. $ Hence $ p=\frac{1}{\sqrt[3]{3}}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें