Functions Question 669

Question: The function $ f(x),=,|x|+|x-1| $ is

[RPET 1996; Kurukshetra CEE 2002]

Options:

A) Continuous at $ x=1, $ but not differentiable at $ x=1 $

B) Both continuous and differentiable at $ x=1 $

C) Not continuous at $ x=1 $

D) Not differentiable at $ x=1 $

Show Answer

Answer:

Correct Answer: A

Solution:

We have, $ f(x)=|x|+|x-1| $ $ = \begin{cases} -2x+1, & x<0 & {} \\ x-x+1, & 0\le x<1 & = \\ x+x-1, & x\ge 1 & {} \\ \end{cases} . \begin{cases} -2x+1, & x<0 \\ 1 & 0\le x<1 \\ 2x-1, & x\ge 1 \\ \end{cases} . $ Clearly, $ \underset{x\to {0^{-}}}{\mathop{\lim }},f(x)=1,\underset{x\to {0^{+}}}{\mathop{\lim }},f(x)=1,\underset{x\to {1^{-}}}{\mathop{\lim }},f(x)=1 $ and $ \underset{x\to {1^{+}}}{\mathop{\lim }},f(x)=1 $ . So, $ f(x) $ is continuous at $ x=0,1. $ Now $ f’(x)={ \begin{array}{*{35}{l}} -2,x<0 \\ 0,,0\le x<1 \\ 2,,x\ge 1 \\ \end{cases} . $ Here x = 0, $ f’({0^{+}})=0 $ while $ f’({0^{-}})=-2 $ and at x = 1, $ f’({1^{+}})=2 $ while $ f’({1^{-}})=0 $ Thus, $ f(x) $ is not differentiable at x = 0 and 1.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें