Functions Question 671

Question: Let X and Y be subsets of R, the set of all real numbers. The function $ f:X\to Y $ defined by $ f(x)=x^{2} $ for $ x\in X $ is one-one but not onto if (Here $ {R^{+}} $ is the set of all positive real numbers)

[EAMCET 2000]

Options:

A) $ X=Y={R^{+}} $

B) $ X=R,\ Y={R^{+}} $

C) $ X={R^{+}},\ Y=R $

D) $ X=Y=R $

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x_1)=f(x_2)\Rightarrow x_1^{2}=x_2^{2}\Rightarrow x_1=x_2 $ , [if $ X={R^{+}}] $
Þ f is one-one. Since $ R_{f}={R^{+}}\subseteq R=Y $ ; \ f is not onto.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें