Functions Question 671

Question: Let X and Y be subsets of R, the set of all real numbers. The function $ f:X\to Y $ defined by $ f(x)=x^{2} $ for $ x\in X $ is one-one but not onto if (Here $ {R^{+}} $ is the set of all positive real numbers)

[EAMCET 2000]

Options:

A) $ X=Y={R^{+}} $

B) $ X=R,\ Y={R^{+}} $

C) $ X={R^{+}},\ Y=R $

D) $ X=Y=R $

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x_1)=f(x_2)\Rightarrow x_1^{2}=x_2^{2}\Rightarrow x_1=x_2 $ , [if $ X={R^{+}}] $
Þ f is one-one. Since $ R_{f}={R^{+}}\subseteq R=Y $ ; \ f is not onto.