Functions Question 678

Question: $ \underset{x\to 0}{\mathop{\lim }},\frac{x^{3}\cot x}{1-\cos x}= $

[AI CBSE 1988; DSSE 1988]

Options:

A) 0

B) 1

C) 2

D) ?2

Show Answer

Answer:

Correct Answer: C

Solution:

$ \underset{x\to 0}{\mathop{\lim }},\frac{x^{3}\cot x}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }}( \frac{x^{3}\cot x}{1-\cos x}\times \frac{1+\cos x}{1+\cos x} ) $ $ =\underset{x\to 0}{\mathop{\lim }}{{( \frac{x}{\sin x} )}^{3}}\times \underset{x\to 0}{\mathop{\lim }}\cos x\times \underset{x\to 0}{\mathop{\lim }}(1+\cos x)=2 $