Functions Question 679

Question: $ \underset{x\to 0}{\mathop{\lim }},\frac{x(e^{x}-1)}{1-\cos x}= $

Options:

A) 0

B) $ \infty $

C) ?2

D) 2

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{x\to 0}{\mathop{\lim }}\frac{x,(e^{x}-1)}{1-\cos x}=\underset{x\to 0}{\mathop{\lim }}\frac{2x,(e^{x}-1)}{4.{{\sin }^{2}}\frac{x}{2}} $ $ =2\underset{x\to 0}{\mathop{\lim }}[ \frac{{{(x/2)}^{2}}}{{{\sin }^{2}}\frac{x}{2}} ],( \frac{e^{x}-1}{x} )=2. $