Functions Question 683

Question: If $ f(x)= \begin{cases} & \frac{x^{2}-1}{x+1},,\text{when }x\ne -1 \\ & -2,,\text{when }x=-1 \\ \end{cases} . $ ,then

Options:

A) $ \underset{x\to {{(-1)}^{-}}}{\mathop{\lim }},f(x)=-2 $

B) $ \underset{x\to {{(-1)}^{+}}}{\mathop{\lim }},f(x)=-2 $

C) $ f(x) $ is continuous at $ x=-1 $

D) All the above are correct

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{x\to 1-}{\mathop{\lim }},f(x)=-2 $ and $ f(-1)=-,2. $