Functions Question 688
Question: If $ f(x)= \begin{cases} & ,x,\ \text{when }0\le x\le 1 \\ & 2-x,\ \text{when }1<x\le 2 \\ \end{cases} . $ , then $ \underset{x\to 1}{\mathop{\lim }},f(x)= $
Options:
A) 1
B) 2
C) 0
D) Does not exist
Show Answer
Answer:
Correct Answer: A
Solution:
Hence $ \underset{x\to 1}{\mathop{\lim }}f(x)=1 $ Aliter : $ \underset{x\to 1-}{\mathop{\lim }}f(x)=\underset{h\to 0}{\mathop{\lim }},(1-h)=1 $ and $ \underset{x\to 1+}{\mathop{\lim }}f(x)=\underset{h\to 0}{\mathop{\lim }},2-(1+h)=1 $ Hence limit of function is 1.