Functions Question 69
Question: If $ f(x)= \begin{cases} & \frac{x^{4}-16}{x-2},when,x\ne 2 \\ & ,16,,when,x=2 \\ \end{cases} . $ , then
[AISSE 1984]
Options:
A) $ f(x) $ is continuous at $ x=2 $
B) $ f(x) $ is discountinous at $ x=2 $
C) $ \underset{x\to 2}{\mathop{\lim }},f(x)=16 $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
$ \underset{x\to 2}{\mathop{\lim }}f(x)=\underset{x\to 2}{\mathop{\lim }}(x+2)(x^{2}+4)=32,f(2)=16. $