Functions Question 698
Question: Let a relation R in the set R of real numbers be defined as (a, b) $ \in R $ if and only if $ 1+ab>o $ for all $ a,b\in R $ . The relation R is
Options:
A) Reflexive and symmetric
B) Symmetric and transitive
C) Only transitive
D) An equivalence relation
Show Answer
Answer:
Correct Answer: A
Solution:
[a] we have,  $ R={(a,b):1+ab>0,ab\in R} $  Let  $ a\in R\therefore a^{2}\ge 0 $  or  $ 1+a^{2}>0 $  or  $ (a,a)\in R $
$ \therefore  $  R is reflexive. Let  $ (a,b)\in R,\Rightarrow 1+ab>0\Rightarrow 1+ba>0 $
$ \Rightarrow (b,a)\in R\therefore R $  is symmetric.  $ ( 2,\frac{1}{3} )\in R $  because  $ 1+2( \frac{1}{3} )=\frac{5}{3}>0 $   $ ( \frac{1}{3},-1 )\in R $  because  $ 1+\frac{1}{3}(-1)=\frac{2}{3}>0 $  Now,  $ (2,-1)\in R $ if  $ 1+2(-1)=-1<0, $  which is not true.
$ \therefore  $  R is not transitive.
 BETA
  BETA 
             
             
           
           
           
          