Functions Question 698

Question: Let a relation R in the set R of real numbers be defined as (a, b) $ \in R $ if and only if $ 1+ab>o $ for all $ a,b\in R $ . The relation R is

Options:

A) Reflexive and symmetric

B) Symmetric and transitive

C) Only transitive

D) An equivalence relation

Show Answer

Answer:

Correct Answer: A

Solution:

[a] we have, $ R={(a,b):1+ab>0,ab\in R} $ Let $ a\in R\therefore a^{2}\ge 0 $ or $ 1+a^{2}>0 $ or $ (a,a)\in R $
$ \therefore $ R is reflexive. Let $ (a,b)\in R,\Rightarrow 1+ab>0\Rightarrow 1+ba>0 $
$ \Rightarrow (b,a)\in R\therefore R $ is symmetric. $ ( 2,\frac{1}{3} )\in R $ because $ 1+2( \frac{1}{3} )=\frac{5}{3}>0 $ $ ( \frac{1}{3},-1 )\in R $ because $ 1+\frac{1}{3}(-1)=\frac{2}{3}>0 $ Now, $ (2,-1)\in R $ if $ 1+2(-1)=-1<0, $ which is not true.
$ \therefore $ R is not transitive.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें