Functions Question 716

Question: The inverse of $ f(x)=\frac{2}{3}\frac{10^{x}-{10^{-x}}}{10^{x}+{10^{-x}}} $ is

Options:

A) $ \frac{1}{3}{\log_{10}}\frac{1+x}{1-x} $

B) $ \frac{1}{2}{\log_{10}}\frac{2+3x}{2-3x} $

C) $ \frac{1}{3}{\log_{10}}\frac{2+3x}{2-3x} $

D) $ \frac{1}{6}{\log_{10}}\frac{2-3x}{2+3x} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] if $ y=\frac{2}{3}\frac{10^{x}-{10^{-x}}}{10^{x}+{10^{-x}}},10^{2x}=\frac{3y+2}{2-3y} $ or $ x=\frac{1}{2}{\log_{10}}\frac{2+3y}{2-3y} $
$ \therefore {f^{-1}}(x)=\frac{1}{2}{\log_{10}}\frac{2+3x}{2-3x}. $