Functions Question 717

Question: If $ g(f(x))=| \sin x | $ and $ f(g(x))={{(sin\sqrt{x})}^{2}}, $ then

Options:

A) $ f(x)=sin^{2}x,g(x)=\sqrt{x} $

B) $ f(x)=sinx,g(x)=| x | $

C) $ f(x)=x^{2},g(x)=sin\sqrt{x} $

D) f and g cannot be determined.

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ g(f(x))=| \sin x | $ indicates that possibly $ f(x)=sinx,g(x)=| x | $ Assuming it correct, $ f(g(x))=f(| x |)sin| x |, $ which is not correct. $ f(g(x))={{( \sin \sqrt{x} )}^{2}} $ indicates that possibly Or $ g(x)=sin\sqrt{x},f(x)=x^{2} $ Then $ g(f(x))=g(sin^{2}x)=\sqrt{\sin x}=| \sin x | $ (For the first combination), which is given. Hence $ f(x)=sin^{2}x,g(x)=\sqrt{x} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें