Functions Question 73

Question: The function $ f(x)= \begin{cases} & x,\text{if 0}\le x\le 1 \\ & \text{1,} \text{ if} 1 \lt x\le 2 \\ \end{cases} $ is

[SCRA 1996]

Options:

A) Continuous at all x, $ 0\le x\le 2 $ and differentiable at all x, except $ 1 $ in the interval [0,2]

B) Continuous and differentiable at all x in [0,2]

C) Not continuous at any point in [0,2]

D) Not differentiable at any point [0,2]

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)= \begin{cases} x\text{ ,} & 0\le x\le 1 \\ 1\text{ ,} & 1\ lt x\le 2 \\ \end{cases} . $ $ \underset{x\to {1^{-}}}{\mathop{\lim }} f(x)=\underset{h\to 0}{\mathop{\lim }} f(1-h) $ $ =\underset{h\to 0}{\mathop{\lim }} (1-h)=1 $ $ \underset{x\to {1^{+}}}{\mathop{\lim }} f(x)=\underset{h\to 0}{\mathop{\lim }}f(1+h)=1 $ Hence function is continuous in (0, 2). Now $ \underset{x\to {0^{+}}}{\mathop{\lim }} f(x)=\underset{h\to 0}{\mathop{\lim }}(0+h)=0=f(0) $ $ \underset{x\to {2^{-}}}{\mathop{\lim }} f(x)=\underset{h\to 0}{\mathop{\lim }}(2-h)=1=f(2) $ Hence function is continuous in [0, 2] Clearly, from graph it is not differentiable at $ x=1. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें