Functions Question 74

Question: $ \underset{x\to 0}{\mathop{\lim }},\frac{\sin x-x}{x^{3}}= $

[MNR 1980, 86]

Options:

A) $ \frac{1}{3} $

B) $ -\frac{1}{3} $

C) $ \frac{1}{6} $

D) $ -\frac{1}{6} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{x\to 0}{\mathop{\lim }}\frac{\sin x-x}{x^{3}} $ Expand sin x, then $ =\underset{x\to 0}{\mathop{\lim }},\frac{-\frac{x^{3}}{3,!}+\frac{x^{5}}{5,!}-…}{x^{3}}=\underset{x\to 0}{\mathop{\lim }},[ -\frac{1}{3,!}+\frac{x^{2}}{5,!}-… ]=\frac{-1}{3,!}=\frac{-1}{6} $ . Aliter : Apply L-Hospital?s rule.