Functions Question 740
Question: If $ f(x)=\frac{ax+d}{cx+b} $ and $ f[f(x)]=x $ for all x, then:
Options:
A) $ a=b $
B) $ c=d $
C) $ a+b=0 $
D) $ c+d=0 $
Show Answer
Answer:
Correct Answer: C
Solution:
[c]  $ f(x)=\frac{ax+d}{cx+b} $   $ f(f(x))=\frac{a( \frac{ax+d}{cx+b} )+d}{c( \frac{ax+d}{cx+b} )+b}=\frac{a^{2}x+ad+cdx+bd}{cax+cd+bcx+b^{2}} $   $ f(f(x))=x\Rightarrow \frac{a^{2}x+ad+cdx+bd}{cax+cd+bcx+b^{2}}=x $
$ \Rightarrow c(a+b)x^{2}-(a^{2}-b^{2})x-(a+b)d=0 $
$ \Rightarrow (a+b)(cx^{2}-(a-b)x-d)=0\Rightarrow a+b=0 $  As  $ cx^{2}-(a-b)x-d\ne 0 $  for all x
 BETA
  BETA 
             
             
           
           
           
          