Functions Question 75

Question: $ \underset{h\to 0}{\mathop{\lim }}\frac{{{(a+h)}^{2}}\sin (a+h)-a^{2}\sin a}{h}= $

[IIT 1989]

Options:

A) $ a\cos a+a^{2}\sin a $

B) $ a\sin a+a^{2}\cos a $

C) $ 2a\sin a+a^{2}\cos a $

D) $ 2a\cos a+a^{2}\sin a $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{d}{da}[a^{2}\sin a]=2a\sin a+a^{2}\cos a. $ Aliter : Apply L-Hospital?s rule, $ \underset{h\to 0}{\mathop{\lim }}\frac{{{(a+h)}^{2}}\sin (a+h)-a^{2}\sin a}{h} $ $ =\underset{h\to 0}{\mathop{\lim }}\frac{2(a+h)\sin (a+h)+{{(a+h)}^{2}}\cos (a+h)}{1} $ $ =2a\sin a+a^{2}\cos a. $