Functions Question 78

Question: $ \underset{x\to 0}{\mathop{\lim }},\frac{x\cos x-\sin x}{x^{2}\sin x}= $

[MNR 1984,86]

Options:

A) $ \frac{1}{3} $

B) $ -\frac{1}{3} $

C) 1

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \underset{x\to 0}{\mathop{\lim }},\frac{x\cos x-\sin x}{x^{2}\sin x} $ $ =\underset{x\to 0}{\mathop{\lim }},\frac{-\sin x}{2\sin x+x\cos x} $ (By L-Hospital?s rule) $ =\underset{x\to 0}{\mathop{\lim }},\frac{-\cos x}{3\cos x-x\sin x}=-\frac{1}{3} $ , (Again by L-Hospital?s rule)