Functions Question 79

Question: If $ f(x),=, \begin{cases} x{e^{-,( \frac{1}{|,x,|},+,\frac{1}{x} )}}, & x\ne 0 \\ 0,, & x=0 \\ \end{cases} . $ , then $ f(x), $ is

[AIEEE 2003]

Options:

A) Continuous as well as differentiable for all x

B) Continuous for all x but not differentiable at $ x=0 $

C) Neither differentiable nor continuous at $ x=0 $

D) Discontinuous every where

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(0)=0 $ and $ f(x)=x{e^{-( \frac{1}{|x|}+\frac{1}{x} )}} $
R.H.L. = $ \underset{h\to 0}{\mathop{\lim }},(0+h){e^{-2/h}}=\underset{h\to 0}{\mathop{\lim }},\frac{h}{{e^{2/h}}}=0 $
L.H.L. = $ \underset{h\to 0}{\mathop{\lim }},(0-h){e^{-( \frac{1}{h},-,\frac{1}{h} )}}=0 $ ; \ $ f(x) $ is continuous.
$ R{f}’,(x)=\underset{h\to 0}{\mathop{\lim }},\frac{(0+h){e^{-( \frac{1}{h}+\frac{1}{h} )}}-h{e^{-( \frac{1}{h}+\frac{1}{h} )}}}{h}=0 $
$ L{f}’(x)=\underset{h\to 0}{\mathop{\lim }},\frac{(0-h){e^{-( \frac{1}{h}-\frac{1}{h} )}}-h{e^{-( \frac{1}{h}+\frac{1}{h} )}}}{-h}=1 $

Þ $ L{f}’(x)\ne R{f}’(x) $ . $ f(x) $ is not differentiable at $ x=0. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें