Functions Question 90

Question: If $ f(x)=\frac{x}{1+x} $ , then $ {f^{-1}}(x) $ is equal to

[AMU 1999]

Options:

A) $ \frac{(1+x)}{x} $

B) $ \frac{1}{(1+x)} $

C) $ \frac{(1+x)}{(1-x)} $

D) $ \frac{x}{(1-x)} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)=\frac{x}{1+x} $ . Let $ y=f(x)\Rightarrow x={f^{-1}}(y) $ \ $ y=\frac{x}{1+x}\Rightarrow y+yx=x $
Þ $ x=\frac{y}{1-y} $
Þ $ {f^{-1}}(y)=\frac{y}{1-y} $
Þ $ {f^{-1}}(x)=\frac{x}{1-x} $ .