Functions Question 98

Question: If $ f(x)= \begin{cases} & \frac{x^{2}+3x-10}{x^{2}+2x-15},\ \ \text{when }x\ne -5 \\ & a,,\text{when }x=-5 \\ \end{cases} . $ is continuous at $ x=-5 $ , then the value of ‘a’ will be

[MP PET 1987]

Options:

A) $ \frac{3}{2} $

B) $ \frac{7}{8} $

C) $ \frac{8}{7} $

D) $ \frac{2}{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \underset{x\to ,-,5}{\mathop{\lim }},f(x)=\frac{(x-2)(x+5)}{(x+5),(x-3)}=\frac{-7}{-8}=\frac{7}{8}. $