Integral Calculus Question 102

Question: $ \int_{{}}^{{}}{\frac{x\ dx}{1-x\cot x}}= $

Options:

A) $ \log (\cos x-x\sin x)+c $

B) $ \log (x\sin x-\cos x)+c $

C) $ \log (\sin x-x\cos x)+c $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_{{}}^{{}}{\frac{x,dx}{1-x\cot x}}=\int_{{}}^{{}}{\frac{x,dx}{1-x\frac{\cos x}{\sin x}}}=\int_{{}}^{{}}{\frac{x\sin x}{\sin x-x\cos x},dx} $ $ =\int_{{}}^{{}}{\frac{dt}{t}}=\log t=\log (\sin x-x\cos x)+c. $ {Putting $ \sin x-x\cos x=t $ ,
Þ $ [\cos x-(-x\sin x+\cos x)],dx=dt\Rightarrow x\sin x,dx=dt} $