Integral Calculus Question 11

Question: $ \int{\frac{dx}{\sin (x-a)\sin (x-b)}} $ is

[Kerala (Engg.) 2005]

Options:

A) $ \frac{1}{\sin (a-b)}\log | \frac{\sin (x-a)}{\sin (x-b)} |+c $

B) $ \frac{-1}{\sin (a-b)}\log | \frac{\sin (x-a)}{\sin (x-b)} |+c $

C) $ \log \sin (x-a)\sin (x-b)+c $

D) $ \log | \frac{\sin (x-a)}{\sin (x-b)} | $

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ \int{\frac{dx}{\sin (x-a)\sin (x-b)}} $ $ =\frac{1}{\sin (a-b)}\int{\frac{\sin { (x-b)-(x-a) }}{\sin (x-a)\sin (x-b)}}\ dx $ $ =\frac{1}{\sin (a-b)}\int{\frac{\sin (x-b)\cos (x-a)-\cos (x-b)\sin (x-a)}{\sin (x-a)\sin (x-b)}dx} $ $ =\frac{1}{\sin (a-b)}[ \int{\cot (x-a)dx-\int{\cot (x-b)dx}} ] $ $ =\frac{1}{\sin (a-b)}\ [ \log \sin (x-a)-\log \sin (x-b) ]+c $ $ =\frac{1}{\sin (a-b)}\ \log | \frac{\sin (x-a)}{\sin (x-b)} |+c $ .