Integral Calculus Question 111

Question: $ \int_{{}}^{{}}{x{{\sin }^{-1}}x\ dx}= $

[MP PET 1991]

Options:

A) $ ( \frac{x^{2}}{2}-\frac{1}{4} ){{\sin }^{-1}}x+\frac{x}{4}\sqrt{1-x^{2}}+c $

B) $ ( \frac{x^{2}}{2}+\frac{1}{4} ){{\sin }^{-1}}x+\frac{x}{4}\sqrt{1-x^{2}}+c $

C) $ ( \frac{x^{2}}{2}-\frac{1}{4} ){{\sin }^{-1}}x-\frac{x}{4}\sqrt{1-x^{2}}+c $

D) $ ( \frac{x^{2}}{2}+\frac{1}{4} ){{\sin }^{-1}}x-\frac{x}{4}\sqrt{1-x^{2}}+c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{x{{\sin }^{-1}}xdx=\frac{x^{2}}{2}{{\sin }^{-1}}x-\int_{{}}^{{}}{\frac{1}{\sqrt{1-x^{2}}}.\frac{x^{2}}{2}dx+c}} $ $ =\frac{x^{2}}{2}{{\sin }^{-1}}x-\frac{1}{2}\int_{{}}^{{}}{-\frac{(1-x^{2})+1}{\sqrt{1-x^{2}}}}dx+c $
$ =\frac{x^{2}}{2}{{\sin }^{-1}}x+\frac{1}{2}\int_{{}}^{{}}{\sqrt{1-x^{2}}dx-\frac{1}{2}\int_{{}}^{{}}{\frac{1}{\sqrt{1-x^{2}}}dx+c}} $ $ =\frac{x^{2}}{2}{{\sin }^{-1}}x+\frac{x}{4}\sqrt{1-x^{2}}+\frac{1}{4}{{\sin }^{-1}}x-\frac{1}{2}{{\sin }^{-1}}x+c $
$ =\frac{x^{2}}{2}{{\sin }^{-1}}x+\frac{x}{4}\sqrt{1-x^{2}}-\frac{1}{4}{{\sin }^{-1}}x $
$ =( \frac{x^{2}}{2}-\frac{1}{4} ){{\sin }^{-1}}x+\frac{x}{4}\sqrt{1-x^{2}}+c $ .