Integral Calculus Question 118
Question: $ \int_{{}}^{{}}{x\log xdx=} $
[MP PET 1987]
Options:
A) $ \frac{x^{2}}{2}\log x-\frac{x^{2}}{2}+c $
B) $ \frac{x^{2}}{2}\log x-\frac{x^{2}}{4}+c $
C) $ \frac{x^{2}}{2}\log x+\frac{x^{2}}{2}+c $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
$ \int_{{}}^{{}}{x\log x,dx}=\frac{x^{2}}{2}\log x-\int_{{}}^{{}}{\frac{1}{x}.\frac{x^{2}}{2}dx+c}=\frac{x^{2}\log x}{2}-\frac{x^{2}}{4}+c $ .