Integral Calculus Question 118

Question: $ \int_{{}}^{{}}{x\log xdx=} $

[MP PET 1987]

Options:

A) $ \frac{x^{2}}{2}\log x-\frac{x^{2}}{2}+c $

B) $ \frac{x^{2}}{2}\log x-\frac{x^{2}}{4}+c $

C) $ \frac{x^{2}}{2}\log x+\frac{x^{2}}{2}+c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_{{}}^{{}}{x\log x,dx}=\frac{x^{2}}{2}\log x-\int_{{}}^{{}}{\frac{1}{x}.\frac{x^{2}}{2}dx+c}=\frac{x^{2}\log x}{2}-\frac{x^{2}}{4}+c $ .