Integral Calculus Question 123

Question: $ \int{\frac{dx}{\cos x+\sqrt{3}\sin x}} $ equals

Options:

A) $ \log \tan ( \frac{x}{2}+\frac{\pi }{12} )+C $

B) $ \log \tan ( \frac{x}{2}-\frac{\pi }{12} )+C $

C) $ \frac{1}{2}\log \tan ( \frac{x}{2}+\frac{\pi }{12} )+C $

D) $ \frac{1}{2}\log \tan ( \frac{x}{2}-\frac{\pi }{12} )+C $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ I=\int{\frac{dx}{\cos x+\sqrt{3}\sin x}} $
$ \Rightarrow I=\int{\frac{dx}{2[ \frac{1}{2}\cos x+\frac{\sqrt{3}}{2}\sin x ]}} $ $ =\frac{1}{2}\int{\frac{dx}{[ \sin \frac{\pi }{6}\cos x+\cos ,\frac{\pi }{6}\sin x ]}} $ $ =\frac{1}{2}.\int{\frac{dx}{\sin ( x+\frac{\pi }{6} )}} $
$ \Rightarrow I=\frac{1}{2}.\int{\cos ec( x+\frac{\pi }{6} )dx} $ $ \because \int{\cos ecxdx=\log | (\tan x/2) |+C} $
$ \therefore I=\frac{1}{2}.\log \tan ( \frac{x}{2}+\frac{\pi }{12} )+C $