Integral Calculus Question 135

Question: $ \int_{{}}^{{}}{{a^{3x+3}}dx}= $

[Roorkee 1977]

Options:

A) $ \frac{{a^{3x+3}}}{\log a}+c $

B) $ \frac{{a^{3x+3}}}{3\log a}+c $

C) $ {a^{3x+3}}\log a+c $

D) $ 3{a^{3x+3}}\log a+c $

Show Answer

Answer:

Correct Answer: B

Solution:

Put $ t=3x+3\Rightarrow dt=3,dx, $ then $ \int_{{}}^{{}}{{a^{3x+3}}dx}=\frac{1}{3}\int_{{}}^{{}}{a^{t}dt}=\frac{1}{3}\frac{a^{t}}{{\log_{e}}a}+c=\frac{{a^{3x+3}}}{3{\log_{e}}a}+c $ .