Integral Calculus Question 137

Question: $ \int{\sqrt{\frac{x}{1-x}}dx} $ is equal to

Options:

A) $ {{\sin }^{-1}}\sqrt{x}+c $

B) $ {{\sin }^{-1}}{\sqrt{x}-\sqrt{x(1-x)}}+c $

C) $ {{\sin }^{-1}}\sqrt{x(1-x)}+c $

D) $ {{\sin }^{-1}}\sqrt{x}-\sqrt{x(1-x)}+c $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Put $ x={{\sin }^{2}}\theta \Rightarrow dx=2\sin \theta \cos \theta $
$ \therefore \int{\sqrt{\frac{x}{1-x}dx}}=\int{\frac{\sin \theta }{\cos \theta }.2\sin \theta \cos \theta d\theta } $ $ =\int{(1-cos2\theta )d\theta =\theta -\frac{1}{2}\sin 2\theta +c} $ $ ={{\sin }^{-1}}\sqrt{x}-\sqrt{x(1-x)}+c $