Integral Calculus Question 139

Question: $ \int_{{}}^{{}}{x{{\cos }^{2}}}xdx= $

[IIT 1972]

Options:

A) $ \frac{x^{4}}{4}-\frac{1}{4}x\sin 2x-\frac{1}{8}\cos 2x+c $

B) $ \frac{x^{2}}{4}+\frac{1}{4}x\sin 2x+\frac{1}{8}\cos 2x+c $

C) $ \frac{x^{4}}{4}-\frac{1}{4}x\sin 2x+\frac{1}{8}\cos 2x+c $

D) $ \frac{x^{4}}{4}+\frac{1}{4}x\sin 2x-\frac{1}{8}\cos 2x+c $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_{{}}^{{}}{x{{\cos }^{2}}x,dx}=\frac{1}{2}\int_{{}}^{{}}{x(1+\cos 2x),dx} $ $ =\frac{x^{2}}{4}+\frac{1}{2}[ \frac{x\sin 2x}{2}-\int_{{}}^{{}}{\frac{\sin 2x}{2},dx} ]+c $ $ =\frac{x^{2}}{4}+\frac{x\sin 2x}{4}+\frac{\cos 2x}{8}+c. $