Integral Calculus Question 14

Question: $ \int{{{\cos }^{-3/7}}}x{{\sin }^{-11/7}}xdx= $

[Kerala (Engg.) 2005]

Options:

A) $ \log |{{\sin }^{4/7}}x|+c $

B) $ \frac{4}{7}{{\tan }^{4/7}}x+c $

C) $ \frac{-7}{4}{{\tan }^{-4/7}}x+c $

D) $ \log |{{\cos }^{3/7}}x|+c $

E) $ \frac{7}{4}{{\tan }^{-4/7}}x+C $

Show Answer

Answer:

Correct Answer: C

Solution:

$ m+n=-\frac{3}{7}+( \frac{-11}{7} )=-2 $ (?ve integer) $ I=\int{{{\cos }^{-3/7}}x( {{\sin }^{(-2+3/7)}}x )dx}=\int{{{\cos }^{-3/7}}}x,{{\sin }^{-2}}x,{{\sin }^{3/7}}xdx $ $ =\int{\frac{\cos ec^{2}x}{( \frac{{{\cos }^{3/7}}x}{{{\sin }^{3/7}}x} )}}dx=\int{\frac{\cos ec^{2}x,dx}{{{\cot }^{3/7}}x}} $ Put $ \cot x=t $ Þ $ -\cos ec^{2}xdx=dt $ $ I=-\int{\frac{dt}{{t^{3/7}}}} $ $ =-\frac{{t^{-\frac{3}{7}+1}}}{-\frac{3}{7}+1}+c $ $ =-\frac{7}{4}{t^{4/7}}+c $ $ =-\frac{7}{4}{{\cot }^{4/7}}x+c $ $ =-\frac{7}{4}{{\tan }^{-4/7}}x+c $ .