Integral Calculus Question 140

Question: $ \int_{{}}^{{}}{({e^{a\log x}}+{e^{x\log a}})dx}= $

Options:

A) $ {x^{a+1}}+\frac{a^{x}}{\log a}+c $

B) $ \frac{{x^{a+1}}}{a+1}+a^{x}\log a+c $

C) $ \frac{{x^{a+1}}}{a+1}+\frac{a^{x}}{\log a}+c $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_{{}}^{{}}{({e^{a\log x}}+{e^{x\log a}}),dx}=\int_{{}}^{{}}{({e^{{\log_{e}}x^{a}}}+{e^{{\log_{e}}a^{x}}}),dx} $ $ =\int_{{}}^{{}}{(x^{a}+a^{x}),dx}=\frac{{x^{a+1}}}{a+1}+\frac{a^{x}}{\log a}+c $ .