Integral Calculus Question 142

Question: What is the value of $ \int\limits_0^{1}{(x-1){e^{-x}}dx} $ ?

Options:

A) 0

B) e

C) $ \frac{1}{e} $

D) $ \frac{-1}{e} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Given integral is $ I=\int_0^{1}{(x-1){e^{-x}}dx} $ Integrating by parts taking $ (x-1) $ as first function We get, $ I=[(x-1){-{e^{-x}}}]_0^{1}-\int_0^{1}{1.(-{e^{-x}})dx} $ $ =-(1-1)\frac{1}{e}+(-1)e^{0}+[-{e^{-x}}]_0^{1} $ $ =-1-\frac{1}{e}+1=-\frac{1}{e} $