Integral Calculus Question 143

Question: The value of $ \int_0^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}dt}+\int_0^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t}dt} $ is

Options:

A) $ \pi $

B) $ \frac{\pi }{2} $

C) $ \frac{\pi }{4} $

D) 1

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let $ I_1=\int_0^{{{\sin }^{2}}x}{{{\sin }^{-1}}\sqrt{t}dt} $ Put $ t={{\sin }^{2}}u\Rightarrow dt=2\sin u\cos udu $

$ \Rightarrow dt=\sin 2udu $

$ \therefore ,I_1=\int_0^{x}{u\sin 2udu} $ Let $ I_2=\int_0^{{{\cos }^{2}}x}{{{\cos }^{-1}}\sqrt{t},dt} $ Put $ t={{\cos }^{2}}v\Rightarrow dt=-2\cos vsinvdv $

$ \Rightarrow dt=-\sin 2,vdv $

$ \therefore I_2=\int_{\frac{\pi }{2}}^{x}{v}(-sin2v)dv=-\int_{\frac{\pi }{2}}^{x}{v\sin 2,vdv} $ $ =-\int_{\frac{\pi }{2}}^{x}{u\sin 2udu} $ [change of variable]

$ \therefore I=I_1+I_2=\int_0^{x}{u\sin 2udu-\int_{\frac{\pi }{2}}^{x}{u\sin 2,udu}} $ $ =\int\limits_0^{\frac{\pi }{2}}{u\sin 2udu+\int\limits_{\frac{\pi }{2}}^{x}{u\sin 2udu-\int\limits_{\frac{\pi }{2}}^{x}{u\sin 2udu}}} $ $ =\int\limits_0^{\frac{\pi }{2}}{u\sin 2udu}=\frac{\pi }{4} $ [Integrate by parts]



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें