Integral Calculus Question 146

Question: $ \int_{{}}^{{}}{\frac{\cos 2x+x+1}{x^{2}+\sin 2x+2x}}\ dx= $

[AI CBSE 1980]

Options:

A) $ \log (x^{2}+\sin 2x+2x)+c $

B) $ -\log (x^{2}+\sin 2x+2x)+c $

C) $ \frac{1}{2}\log (x^{2}+\sin 2x+2x)+c $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Put $ x^{2}+\sin 2x+2x=t, $ then it reduces to $ \frac{1}{2}\int_{{}}^{{}}{\frac{1}{t},dt}=\frac{1}{2}\log t+c=\frac{1}{2}\log (x^{2}+\sin 2x+2x)+c. $