Integral Calculus Question 146
Question: $ \int_{{}}^{{}}{\frac{\cos 2x+x+1}{x^{2}+\sin 2x+2x}}\ dx= $
[AI CBSE 1980]
Options:
A) $ \log (x^{2}+\sin 2x+2x)+c $
B) $ -\log (x^{2}+\sin 2x+2x)+c $
C) $ \frac{1}{2}\log (x^{2}+\sin 2x+2x)+c $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
Put $ x^{2}+\sin 2x+2x=t, $ then it reduces to $ \frac{1}{2}\int_{{}}^{{}}{\frac{1}{t},dt}=\frac{1}{2}\log t+c=\frac{1}{2}\log (x^{2}+\sin 2x+2x)+c. $