Integral Calculus Question 148

If $ l^{r}(x) $ means log log log … log x, the log being repeated r times. then $ \int{{xl(x)l^{2}(x)l^{3}(x)….l^{r}(x)}^{-1}}dx$ is equal to

Options:

A) $ {l^{r+1}}(x)+C $

B) $ \frac{{l^{r+1}}(x)}{r+1}+C $

C) $ l^{r}(x)+C $

D) None

Show Answer

Answer:

Correct Answer: A

Solution:

Putting $ I_1={l^{r+1}}(x)=t $ and $ \frac{1}{xl(x)l^{2}(x)….l^{r}(x)}dx=dt $ we get, $ \int{\frac{1}{xl^{2}(x)l^{3}(x)…..l^{r}(x)}} $ $ =\int{1.dt=t+C={l^{r+1}}(x)+C} $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index