Integral Calculus Question 154

Question: If $ \int{g(x)dx=g(x),} $ then $ \int{g(x){f(x)+f’(x)}dx} $ is equal to

Options:

A) $ g(x)f(x)-g(x)f’(x)+C $

B) $ g(x)f’(x)+C $

C) $ g(x)f(x)+C $

D) $ g(x)f^{2}(x)+C $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ \int{g(x){f(x)+f’(x)}dx} $ $ =\int{g(x)f(x)dx+\int{g(x)f’(x)dx}} $ $ =f(x)\int{g(x)dx-\int{{f’(x)g(x)dx}dx+\int{g(x)f’(x)dx}}} $ $ =f(x)g(x)-\int{f’(x)g(x)dx+\int{g(x)f’(x)dx}} $ [Given $ \int{g(x)dx=g(x)} $ ] $ =f(x)g(x)+c $