Integral Calculus Question 16

Question: $ \int_{{}}^{{}}{{e^{x\log a}}.\ e^{x}\ dx} $ is equal to

[Kerala (Engg.) 2005]

Options:

A) $ {{(ae)}^{x}}+c $

B) $ \frac{{{(ae)}^{x}}}{\log (ae)}+c $

C) $ \frac{e^{x}}{1+\log a}+c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_{{}}^{{}}{{e^{x\log a}}e^{x}dx}=\int_{{}}^{{}}{{e^{\log a^{x}}}.,e^{x}dx}=\int_{{}}^{{}}{a^{x}e^{x}dx} $ $ =\int_{{}}^{{}}{{{(ae)}^{x}}dx}=\frac{{{(ae)}^{x}}}{\log (ae)}+C. $