Integral Calculus Question 163
Question: If $ \int{\sec x\cos ecxdx=\log | g(x) |}+c, $ then what is $ g(x) $ equal to?
Options:
A) $ \sin x\cos x $
B) $ {{\sec }^{2}}x $
C) $ \tan x $
D) $ \log | \tan x | $
Show Answer
Answer:
Correct Answer: C
Solution:
Let $ I=\int{\sec x.\cos ecxdx} $ $ =\int{\frac{1}{\sin x\cos x}dx} $ $ =2\int{\frac{1}{\sin 2x}dx} $ $ [\because \sin 2x=\frac{2\tan x}{1+{{\tan }^{2}}x}] $ $ =\int{\frac{{{\sec }^{2}}x}{\tan x}dx} $ Let $ \tan x=t\Rightarrow {{\sec }^{2}}dx=dt $ So, $ I=\int{\frac{dt}{t}=\log | t |+c=\log | \tan x |+c} $ But $ \int{\sec x\cos ecxdx=\log | \tan x |+c} $ $ \therefore g(x)=\tan x $
 BETA
  BETA 
             
             
           
           
           
          