Integral Calculus Question 166

Question: $ \int_{{}}^{{}}{x{{\tan }^{-1}}}xdx= $

[Roorkee 1979]

Options:

A) $ \frac{1}{2}(x^{2}+1){{\tan }^{-1}}x-\frac{1}{2}x+c $

B) $ \frac{1}{2}(x^{2}-1){{\tan }^{-1}}x-\frac{1}{2}x+c $

C) $ \frac{1}{2}(x^{2}+1){{\tan }^{-1}}x+\frac{1}{2}x+c $

D) $ \frac{1}{2}(x^{2}+1){{\tan }^{-1}}x-x+c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{x,.,{{\tan }^{-1}}x,dx=\frac{x^{2}}{2}{{\tan }^{-1}}x-\frac{1}{2}\int_{{}}^{{}}{\frac{x^{2}+1-1}{1+x^{2}},dx}} $ $ =\frac{x^{2}}{2}{{\tan }^{-1}}x-\frac{1}{2}x+\frac{1}{2}{{\tan }^{-1}}x+c $ $ =\frac{1}{2}{{\tan }^{-1}}x,.,(x^{2}+1)-\frac{1}{2}x+c $ .