Integral Calculus Question 173

Question: If $ \int{f(x)\cos xdx=\frac{1}{2}f^{2}(x)+c,} $ then $ f(x) $ can be

Options:

A) x

B) 1

C) $ \cos x $

D) $ sinx $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Since $ \int{f{{[x]}^{n}}f’(x)dx=\frac{{{[f(x)]}^{n+1}}}{n+1}+c} $
$ \therefore \int{f(x)\cos xdx=\frac{f^{2}(x)}{2}+c} $
$ \Rightarrow f’(x)=\cos x\Rightarrow f(x)=\sin x $