Integral Calculus Question 184

Question: $ \int_0^{1}{

[f(x)g’’(x)-f’’(x)g(x)]dx} $ is equal to: [Given f(0) = g (0) = 0]

Options:

A) $ f(1)g(1)-f(1)g’(1) $

B) $ f(1)g’(1)+f’(1)g(1) $

C) $ f(1)g’(1)-f’(1)g(1) $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Integrating by parts. $ \int{f(x)g’’(x)dx-\int{f’’(x)g(x)dx}} $ $ =f(x)g’(x)-\int{f’(x)g’(x)dx} $ $ -f’(x)g(x)+\int{f’(x)g’(x)dx} $ $ =f(x)g’(x)-f’(x)g(x) $ Hence, $ \int_0^{1}{f(x)g’’(x)dx-\int_0^{1}{f’’(x)g(x)dx}} $ $ =f(1)g’(1)-f’(1)g(1)-f(0)g’(0)+f’(0)g(0) $ $ =f(1)g’(1)-f’(1)g(1) $