Integral Calculus Question 185

Question: $ \int_{{}}^{{}}{\frac{dx}{\sqrt{x}+\sqrt{x-2}}=} $

[MP PET 1990]

Options:

A) $ \frac{1}{3}[{x^{3/2}}-{{(x-2)}^{3/2}}]+c $

B) $ \frac{2}{3}[{x^{3/2}}-{{(x-2)}^{3/2}}]+c $

C) $ \frac{1}{3}[{{(x-2)}^{3/2}}-{x^{3/2}}]+c $

D) $ \frac{2}{3}[{{(x-2)}^{3/2}}-{x^{3/2}}]+c $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{\frac{dx}{\sqrt{x}+\sqrt{x-2}}=\frac{1}{2}\int_{{}}^{{}}{\frac{x-(x-2)}{\sqrt{x}+\sqrt{x-2}},dx}} $ $ =\frac{1}{2}\int_{{}}^{{}}{(\sqrt{x}-\sqrt{x-2}),dx}=\frac{1}{2}[ \frac{{x^{3/2}}}{3/2}-\frac{{{(x-2)}^{3/2}}}{3/2} ]+c $ $ =\frac{1}{3}{ {x^{3/2}}-{{(x-2)}^{3/2}} }+c. $