Integral Calculus Question 186

Question: $ \int\limits_0^{\infty }{\frac{dx}{(x^{2}+a^{2})(x^{2}+b^{2})}} $ is

Options:

A) $ \frac{\pi ab}{a+b} $

B) $ \frac{\pi }{2(a+b)} $

C) $ \frac{\pi }{2ab(a+b)} $

D) $ \frac{\pi (a+b)}{2ab} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ \int\limits_0^{\infty }{\frac{dx}{(x^{2}+a^{2})(x^{2}+b^{2})}} $ $ =\frac{1}{b^{2}-a^{2}}\int\limits_0^{\infty }{\frac{(x^{2}+b^{2})-(x^{2}+a^{2})}{(x^{2}+a^{2})(x^{2}+b^{2})}} $ $ =\frac{1}{b^{2}-a^{2}}\int\limits_0^{\infty }{[ \frac{1}{x^{2}+a^{2}}-\frac{1}{x^{2}+b^{2}} ]dx} $ $ =\frac{1}{b^{2}-a^{2}}[ \frac{1}{a}{{\tan }^{-1}}\frac{x}{a}-\frac{1}{b}{{\tan }^{-1}}\frac{x}{b} ]_0^{\infty } $ $ =\frac{1}{b^{2}-a^{2}}[ \frac{\pi }{2a}-\frac{x}{2b} ]=\frac{\pi }{2ab(a+b)} $