Integral Calculus Question 196

Question: The tangent of the curve $ y=f(x) $ at the point with abscissa $ x=1 $ from an angle of $ \pi /6 $ and at the point $ x=2 $ an angle of $ \pi /3 $ and at the point $ x=3 $ an angle of $ \pi /4 $ . If $ f’’(x) $ is continuous, then the value of $ \int\limits_1^{3}{f’’(x)f’(x)dx+\int\limits_2^{3}{f’’(x)dx}} $ is

Options:

A) $ \frac{4\sqrt{3}-1}{3\sqrt{3}} $

B) $ \frac{3\sqrt{3}-1}{2} $

C) $ \frac{4-3\sqrt{3}}{3} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] According to question $ f’(1)=tan\frac{\pi }{6}=\frac{1}{\sqrt{3}} $ $ f’(2)=tan\frac{\pi }{3}=\sqrt{3} $ and $ f’(3)=tan\frac{\pi }{4}=1 $ so, $ \int\limits_1^{3}{f’’(x)f’(x)dx+\int\limits_1^{3}{f’’(x)dx}} $ $ =[ \frac{{{{ f’(x) }}^{2}}}{2} ]_1^{3}+[ f’(x) ]_2^{3} $ $ =\frac{1}{2}[ 1-\frac{1}{3} ]+[ 1-\sqrt{3} ]=\frac{4}{3}-\sqrt{3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें