Integral Calculus Question 197

Question: If $ A=\int\limits_0^{1}{\frac{e^{t}}{t+1}dt,} $ then $ \int\limits_0^{1}{e^{t}\log (1+t)dt} $ in terms of A equals

Options:

A) $ e\log (A) $

B) $ \frac{e}{2}-A $

C) $ e-l-\frac{A}{2} $

D) $ \frac{e}{2}-l-A $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ \int\limits_0^{1}{e^{t}}\log (1+t)dt=[ e^{t}.\frac{1}{1+t} ]_0^{1}-\int\limits_0^{1}{\frac{e^{t}}{1+t}dt} $ $ =\frac{e}{2}-1-A $