Integral Calculus Question 199

Question: $ \int_{{}}^{{}}{\frac{\sin x}{\sin (x-\alpha )}dx=} $

[RPET 1999; Kerala (Engg.) 2002; AIEEE 2004]

Options:

A) $ x\cos \alpha -\sin \alpha \log \sin (x-\alpha )+c $

B) $ x\cos \alpha +\sin \alpha \log \sin (x-\alpha )+c $

C) $ x\sin \alpha -\sin \alpha \log \sin (x-\alpha )+c $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int_{{}}^{{}}{\frac{\sin x}{\sin (x-\alpha )},dx=\int_{{}}^{{}}{\frac{\sin (x-\alpha +\alpha )}{\sin (x-\alpha )},dx}} $ $ =\int_{{}}^{{}}{\frac{{ (\sin (x-\alpha )\cos \alpha +\cos (x-\alpha )\sin \alpha }}{\sin (x-\alpha )},dx} $ $ =\int_{{}}^{{}}{\cos \alpha ,dx+\int_{{}}^{{}}{\sin \alpha ,.,\cot ,(x-\alpha ),dx}} $ $ =x\cos \alpha +\sin \alpha ,.,\log \sin (x-\alpha )+c $ .