Integral Calculus Question 200

Question: Let $ f:(0,\infty )\to R $ and $ F(x)=\int\limits_0^{x}{f(t)dt} $ .If $ F(x^{2})=x^{2}(1+x), $ then $ f(4) $ equals

Options:

A) $ \frac{5}{4} $

B) 7

C) 4

D) 2

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ F’(x)=f(x) $ Also, $ F(t)=t( 1+\sqrt{t} ) $
$ \Rightarrow F’(t)=1+\frac{3}{2}{t^{1/2}};F’(4)=1+3=4\Rightarrow f(4)=4 $