Integral Calculus Question 201

Question: $ \int_{{}}^{{}}{\frac{\cos x-\sin x}{1+\sin 2x}\ dx=} $

[AISSE 1985]

Options:

A) $ -\frac{1}{\cos x+\sin x}+c $

B) $ \frac{1}{\cos x+\sin x}+c $

C) $ \frac{1}{\cos x-\sin x}+c $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \int_{{}}^{{}}{\frac{\cos x-\sin x}{1+\sin 2x},dx}=\int_{{}}^{{}}{\frac{\cos x-\sin x}{{{(\sin x+\cos x)}^{2}}},dx} $ Now put $ \sin x+\cos x=t, $ then the required integral is $ -\frac{1}{\sin x+\cos x}+c $ .