Integral Calculus Question 210

Question: $ \int{{e^{3\log x}}{{(x^{4}+1)}^{-1}}dx} $ is equal to

Options:

A) $ \log (x^{4}+1)+C $

B) $ \frac{1}{4}\log (x^{4}+1)+C $

C) $ -\log (x^{4}+1)+C $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ \int{{e^{3\log x}}{{(x^{4}+1)}^{-1}}dx=\int{{e^{\log x^{3}}}\frac{1}{x^{4}+1}dx}} $ $ =\int{\frac{x^{3}}{x^{4}+1}dx=\frac{1}{4}\log (x^{4}+1)+C} $ [since $ {e^{\log x^{3}}}=x^{3} $ ]