Integral Calculus Question 212

Question: $ \int{( {{\sin }^{4}}x-{{\cos }^{4}}x ),dx=} $

[RPET 2003]

Options:

A) $ -\frac{\cos 2x}{2}+c $

B) $ -\frac{\sin 2x}{2}+c $

C) $ \frac{\sin 2x}{2}+c $

D) $ \frac{\cos 2x}{2}+c $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \int{({{\sin }^{4}}x-{{\cos }^{4}}x)dx}=\int{({{\sin }^{2}}x-{{\cos }^{2}}x)},({{\sin }^{2}}x+{{\cos }^{2}}x),dx $ $ =\int{({{\sin }^{2}}x-{{\cos }^{2}}x),dx} $ $ =-\int_{{}}^{{}}{({{\cos }^{2}}x-{{\sin }^{2}}x)dx} $ $ =-\int_{{}}^{{}}{\cos 2x,dx} $ $ =\frac{-\sin 2x}{2}+c $ .