Integral Calculus Question 213

Question: If m is an integer, then $ \int_0^{\pi }{\frac{\sin (2mx)}{\sin x}dx} $ is equal to:

Options:

1

2

0

D) $ \pi $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \int_0^{a}{f(x)dx=\int_0^{a}{f(a-x)dx}} $ $ \int_0^{\pi }{\frac{\sin 2mx}{\sin x}dx=\int_0^{\pi }{\frac{\sin (2m\pi -2mx)}{\sin (\pi -x)}}dx} $ $ =\int_0^{\pi }{\frac{\sin 2mx}{\sin x}dx=-I\Rightarrow 2I=0\Rightarrow I=0} $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index